Numerical Radius Inequalities for Sums and Products of Operators
نویسندگان
چکیده
منابع مشابه
The Sums and Products of Commuting AC-Operators
Abstract: In this paper, we exhibit new conditions for the sum of two commuting AC-operators to be again an AC-operator. In particular, this is satisfied on Hilbert space when one of them is a scalar-type spectral operator.
متن کاملextend numerical radius for adjointable operators on Hilbert C^* -modules
In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.
متن کاملSome improvements of numerical radius inequalities via Specht’s ratio
We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...
متن کاملInequalities for the Norm and Numerical Radius of Composite Operators in Hilbert Spaces
Some new inequalities for the norm and the numerical radius of composite operators generated by a pair of operators are given.
متن کاملNorm and Numerical Radius Inequalities for a Product of Two Linear Operators in Hilbert Spaces
The main aim of the present paper is to establish some norm and numerical radius inequalities for the composite operator BA under suitable assumptions for the transform Cα,β (T ) := (T ∗ −αI) (β I−T ) , where α ,β ∈ C and T ∈ B(H), of the operators involved. Mathematics subject classification (2000): Primary 47A12, 47A30; Secondary 47A63..
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Linear Algebra & Matrix Theory
سال: 2019
ISSN: 2165-333X,2165-3348
DOI: 10.4236/alamt.2019.93003